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MANPAK: A SET OF ALGORITHMS FOR

COMPUTATIONS ON IMPLICITLY DEFINED MANIFOLDS!

BY

WERNER C. RHEINBOLDT?

ABSTRACT. Mathematical models often involve differentiable manifolds that are implicitly
defined as the solution sets of systems of nonlinear equations. The resulting computational
tasks differ considerably from those arising for manifolds defined in parametric form. Here
a collection of algorithms is presented for performing a range of essential tasks on general,
implicitly specified submanifolds of a finite dimensional space. This includes algorithms for
determining local parametrizations and their derivatives, and for evaluating quantities related

to the curvature and with sensitivity measures. The methods have been implemented as a

FORTRAN 77 package, called MANPAK.

1. Introduction.

Mathematical models of many, practically important scientific and technical problems
involve differentiable manifolds that are implicitly defined as the solution sets of systems

of nonlinear equations. For exaiple. the computational study of equilibria typically leads

to nonlinear systems of the form
(1.1) F(:.\)=0. F:R™xR*—R",

where F is a sufficient]v smooth mapping. - &€ R™ a state variable, and A € R? a parameter
vector. Here, interest often centers on dctermining the behavior of the solutions under
variation of A. Under simple conditions (see Section 2 below), the zero set M = {(z,A) €
R™ x RY : F(z.\) = 0} has the structure of a submanifold of dimension d of the product

R™ x RY of the state and parameter space. Then we are faced with a computational analysis

1 The work was supported in part by ONR-grant N-00014-96-1-0235, and NSF-grant CCR-9203488
2Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260
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of particular features of this manifold A/, such as. for instance. of certain types of singular
points on M or of the curvature behavior of M. Another example arises in connection
with equality constrained dvnamical systems that are modelled by differential- algebraic
equations (DAEs). Such DAEs are known to be closely related to ordinary differential

equations (ODEs) on implicitly defined differentiable manifolds.

For these, and similar problems, efficient numerical methods are required for computa-
tions on implicitly defined submanifolds of R". These tasks differ considerably from those
encountered, for example, in computer graphics, where curves or surfaces, i.e. submani-
folds of R®, are considered that are explicitly specified in a parametric form M = {z €
Rd:z=¢(y),y € R} withd=1lord=2, respectively. In fact, one of the basic compu-
tational problems arising in connection with any implicitly defined manifold is exactly the
construction of such parametrizations and rlicir derivatives which requires the solution of
certain systems of nonlinear equations. Other related problems concern, for instance, the
computation of the curvature of rhe manifolds or of the sensitivity of the solutions under
specific changes.

This paper presents numerical methods for performing these and related tasks on gen-
eral, implicitly specified submanifolds of a finite dimensional space. The methods have
been collected in a FORTRAN 77 package, called MANPAK. All routines use reverse com-
munication to avoid calls to subroutines for the evaluation of user-defined functions. The
package is intended for applications to small or medium-sized problems, mainly because
they involve many dense matrix computations. Some examples for use of the algorithms
are noted here, and, in addition, we refer to the companion paper [Rh96¢] for applications

to differential-algebraic equations.

2. Background.

For ease of reference, this section collects some basic definitions and theorems about

submanifolds of R". For details and proofs see, e.g., the texts {S79], [AMRSS].

Let F : R® — R™ be of class C*, k > 0, on an open set E C R"; that is, assume that F

is continuous and that all its partial derivatives of order at most k exist and are continuous

2

.{f;‘:: a2 TR

- :.ﬁ"g":-_gjg‘_ o

¥

it

B

s




N

on E. For k > 1. F is an immersion or submersion at a point z € E if its first derivative
DF(z) € L(R™® . R™) is a one-to-one { linear) mapping or a mapping onto R™. respectively.
We call F a submersion, or immersion on a subset S of E if it has that property at each
point of S. These definitions obviously require that n < m for F to be an immersion and

n > m for it to be a submersion. Clearly, if n > m and DF(z) has maximal rank m. then

F is a submersion at z.

A nonempty subset M C R" is a submanifold of R™ of dimension d and class C* if
for every z. € M there exists an open neighborhood V" of z. in R™ and a submersion
F : V" — R™" of class C* such that M N V" = {z € V" : F(z) = 0}. In particular, if
F:E—-R™ n—m=d>0,is of class C* on an open set E C R" and a submersion
on M := {z € E: F(z) = 0}, then \f is a d-dimensional C* submanifold of R". Any
non-empty, (relatively) open subset of a d-dimensional C*-submanifold of R" is itself a C k

submanifold of R™ of the same dimension.

For the analysis of submanifolds of R" we need local parametrizations. Let M be any
nonempty subset of R". A local d-dimensional C* parametrization of M is a pair (V4,¢)
consisting of 2 nonempty, open subset Ve of RY and a C* mapping  : V¢ — R™ such that
o(V4) is (relatively) open in M. ¢ is a homeomorphism of V¢ onto it image ( V4), and
0 is an immersion on V4. For any point z. of M such that z. € o(V?) we call (V4,0) a
local d-dimensional C* parametrization of M near z.. A nonempty subset M C R"is a
d-dimensional C* submanifold of R" if and only if for every z. € M there exists a local
d-dimensional C* parametrization of .\ near z.. If M is a d-dimensional C* submanifold

of R", and (V", ) a local r-dimensional C % parametrization of M, then, necessarily, r = d.

Instead of defining tangent spaces in general, we use here the following characterization:
Let M be a d-dimensional C* submanifold of R". For any point z. € M we can choose, by
definition, an open neighborhood V" C R" of 7. and a submersion F : V" — R"-4 at 1.
such that M N V" = {z € V" : F(z) = 0}. Then. it can be shown that the d-dimensional
linear subspace S = ker DF(z.) of R" is independent of the particular choice of the local
submersion F: that is. S depends only on M and the particular point. This space S is the

tangent space of M at z. and is denoted by T..M. The subset TM = Urenliz} x T, M)
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of R™ x R™ is the tangent bundle of A.

Since T.R" = R" for every z € R", we have TR” = R" x R™. Thus, the tangent bundle
of a submanifold M of R® appears as a subset of TR". In general, TM is a submanifold
of TR™ = R™ x R". More specifically, if M be a d-dimensional C* submanifold of R"® with
k > 2, then, TM is a 2d-dimensional C*=! submanifold of TR" = R™ x R® & R?", For
k > 2 the local parametrizatiogag,gg the C k=1 submanifold TM of R*" can be constructed
easily from local C* puametﬁiati;m of M Let M be a d-dimensional C* submanifold of
R", k > 2, and (z.,v.) € TM. Then for any local C* parametrization (V¢, ) of M near
zc, the pair (V¢ x RY, (9, D)) i is a C*-! local parametrization of TM near (zc, vc)-

oy

3. Computation of Local Parametrizations.

This section presents algorithms for computing local parametrizations on submanifolds
of R® which are implicitly defined;by local submersions. Some of the material was given
earlier, in part, in [Rh88), [Rh90],-[Rh96b]. In view of the local nature of the methods,

there is no loss of generality to restrict attention to the case of a single submersion.

Assumption A: With positive x'ntegers d, k, m, n such that m = n—-d, n > d, let
F:E~R™beaC* mappmg on an open subset E of R" and a submersion on M =
F-Y(0)={z € E: F(z) =0} wbence M is a d-dimensional C* submanifold of R™.

The following result exhibits & rﬁétliod for the computation of a local parametrization

on M:

Theorem 3.1: Under Assumption 4, let U :€ L(R¢,R") be a linear isomorphism from
R? onto a d-dimensional linear subspace T C R". Denote by U* € L(R",R¥) the adjoint
of U and by J : R? — R™ x R‘the canonical injection that maps R¢ isomorphically onto
{0} x R4. Then the C* mapping H : E — R™ x RY, defined by H(z) = (F(z),U*z) for
z € E, is a local diffeomorphism near a point z. € M if and only if

(3.1) . T,.MNT* = {0}).
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If (3.1) holds at z. then there exists an open set Ve of RY such that the pair (V. ),
defined with the mapping ¢ = H 1o J: V4 — R™. is a local C* parametrization of M

near t..

Proof: By Assumption A, H is of class C* on E. Evidently, DH(z.)h =0for any h € RrR"
requires that DF(z.)h =0and U*h =0 whence. h € T, M and, because of

(3.2) (h,Uy) = (U"h,y) =0, y€R’,

that h € T+ which by (3.1) unphee that A = 0. Conversely, if there exists a nonzero
h € T,,M N T+ then DF(zc)h = 0 and (3.2) requires that U*h = 0 which together
shows that DH(z.)h = 0. Hence there is some open neighborhood V" of z. in R" such
that H is a diffeomorphism from V* onto the open set H(V™) in R™. Evidently, the set
H(M V") = H(V")N ({0} x RY) is open in {0} x Ré and J-'H(MNV*) = V4 C R is
an open subset of R%. This shows that ¢ = H-'0Jis a C* mapping from V¢ onto the
open subset M NV" of M. Both ¢ and its inverse J ~lo Hmnvn are continuous and hence
» is a homeomorphism of Ve onto M N V". Since both H~! and J are immersions, the

same is true for ». Thus. altogether, ¢ is a local d-dimensional C* parametrization of M

near .. O

Note that (3.1) is equivalent with ker DF(z¢) N T+ = {0} or rge DF(z.)"nT = {0}.
At any point z. € M an obvious choice for a subspace T satisfying (3.1) is, of course,

T = T. M. For ease of reference we introduce the following terminology:

Definition 3.3: Under Assumption A a d-dimensional linear subspace T C R" is a co-
ordinate subspace of M at z. € M if (3.1) holds, otherwise z. is a foldpoint of M with
respect to T. In the case T = T. M we speak of the tangential coordinate space of M at

the point z..

Theorem 3.1 readily becomes a computational procedure for local parametrizations by
the introduction of bases. On R" and R? the canonical bases e7,... ,en and ed, ... el
respectively, will be used and we assume that the vectors u,, ... .ug € R" forman orthonor-

mal basis of the given coordinate subspace T of M at z.. Then the matrix representation
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of the mapping U is the n x d matnx with the vectors uy,... .uq as columns. We denote
this matrix again by U'. It is advantageous to shift the open set V4 such that o(0) = z..

Then, in component form, the nonlinear mapping H assumes the form

F(z)

3.2 H:R*"—=R" H(z) =
(3.2 (2) (Wu-m

), vz € ECR"

where F(z) is the column vector consisting of the m components of F evaluated at z. By

- definition of ¢ we have
(3.3) Hig(y) = Jy, VYyeV*.

Thus, the evaluation of z = ¢(y) for given y € V¢ requires the solution of the nonlinear

system of equations

| 3 o _< F(z) (0
Y @)= U())()

Since (3.1) is assumed to hold at z. € M, the Jacobian

DF(z))

(3.5) DHu)=< o

is nonsingular in an open neighborhood of z = z..

Experience has shown that, for the solution of the nonlinear system (3.4), a chord
Newton method works well in practice. It is advantageous to start with P =z.+Uy

which allows the process to be applied in the y-independent form
. F(z)
(3.6) ' =G(z?), j=012..., Glz)=z- Al 0 , A= DH(z.).

We sketch briefly its convergence properties. For given € > 0 such that ||A™]le < 1/2
there exists, by Assumption A, a § > 0 such that the closed ball B = B(z.6) is contained
in E, and that |DF(z) — DF(z.)||, S eforall z € B. Then

. VzeB

(1 N

IDG(z)ll, S |A7" ) IDF(ze) = DF(z)ll; <

(i




&y e,
T
Ry

<hows that G is contractive on B. \{oreover. for r < B it follows from

1
1G(z) = Glrelily = 147 H/ DFizc + stz = £c))(z = £o)ds]
0 2

< el AT e =ty e = el

that G maps B into itself. Recall from the proot of Theoremn 3.1 that H is a diffcomorphism
from an open neighborhood V" of . onto its image. Let & be sufficiently siwall that
B c V™. Then it follows from the contraction theorem that. for any y € V¥, the process

(3.6), started from 1% = 1.+ Uy, converges to the unique fixed point z° € B of C. Clearly,
F(z*) =0 and, from
) x
UT(I —-Ic) = UT(z° —ze) + Z Ul =)=y
J=0

we obtain that H(z*) = 0 and therefore, in view of z* £ V™. that z° = ¢(y).

This shows that. for any local vector y near the origin of R?. the following algorithm

produces the point z = @(y) in the local parametrization (V4,5) necar z. defined by

Theorem 3.1:

GPHI Input: Center point z. € M of the local parametrization, local vector y € RY,
basis matrix U. Jacobian DF(x¢), tolerances:
ri=z.+Uy

1

DF(r.)
Compute the LU factorization of 4 = T

While: iterates do not meet tolerauces

Return for the evaluation of F(z);

F(z)
(J"" O '

Solve Aw = q for w € R™:
=2z —u

End While

Output: (y) = 7.

For the sake of clarity, our reverse communication paradigm was here only indicated

by the statement “Return for the evaluation of F(z)". The MANPAK implementation of

-
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GPHI uses a different step-order for handling the repeated returns to the calling program.
Of course. a full Newton method or some other iterative process can be applied as well.
However, experience has shown that the faster convergence of Newton's method at the

expense of several evaluations and factorizations of DH does not improve the overall

performance.

So far, it was assumed that T is a given coordinate subspace of M at z. and that an
orthonormal basis of T is available. For the construction of T we use a simple reformu-
lation of (3.1): Let Z = T+ be the orthogonal complement of T (under the canonical
inner product of R"), then (3.1) implies that Z & T; M = R"; that is, that Z is also
a complementary subspace of T;, M. Thus, in order to ensure the validity of (3.1), it is
advantageous to construct T by choosing a complementary linear subspace Z of T, M and

to determine T as the orthogonal complement of Z.

As before we use the canonical bases on R? and R" and assume, for the moment, that
a basis z;,... ,2m of Z is available. Then, T is the nullspace of the n x m matrix formed
with these vectors as its columns. We denote this matrix again by Z. Our task is now
to compute an orthogonal basis of the nullspace of the transposed matrix Z T for which
obviously rank ZT = m. There are several approaches for this; probably the simplest one

is based on the LQ-factorization (with row pivoting)
(3.7) ZT=PT(L 0)QT, Q=(Q1Q2)

Here P is an m x m permutation matrix, L an m xm, nonsingular, lower triangular matrix,
and Q an n x n orthogonal matrix partitioned such that Q, and Q; aren xmand n x d
matrices, respectively. Then, clearly, the d columns of Q. form the desired orthonormal

basis of T. This justifies the following MANPAK algorithm:

COBAS Input: m x n matrix Z7 of rank m;
Compute the LQ-factorization (3.7) of ZT with row-pivoting;
Forj=1,....d Do: uj:=Qje;

Output: U = (uy,... ,ud)




Other algorithms for the computation of nuilspace-bases of m x n matrices are given.
for example. in [BHI83}, [CPS6].

Obviously, when the tangential coordinate system is used at z., then COBAS can be
applied with the Jacobian matrix DF(z.) as the matrix Z . In that case, GPHI simplifies
considerably if the LQ-factorization (3.7) of DF(z.) is applied for the solution of the
corrector equation Aw = ¢ in GPHL In fact. this equation has the block-components
DF(z)w = F(z) and UTw = 0, which. with (3.7) and U = @2, can be rewritten as
LUTw = PF(z) and UTw = 0. Thus, in this case, the algorithm can be modified as

follows:

TPHI Input: Center point rc € M of the local parametrization, local vector y € R4,
the LQ factorization (3.6) of DF(z.), tolerances;
ri=z.+Q7 ¥
While: itcrates do not meet tolerances
Return for the evaluation of F'(z);
Solve Lv = PF(z) for v € R™;
z:=z-Qv;
End While
Output: o(y) :=z.

Thus, for each iteration step we need to solve now only an m xm, rather than an n x n,

lower-triangular. The convergence behavior, of course. remains the same.

In COBAS the transposed basis matrix 27T of some complementary space of T, M was
assumed to be available. In order to compute such a matrix it is natural to start with the
matrix respresentation DF(z.) of the Jacobian of F at z. for which the rows form a basis
of (T, M)*. We construct bases of complementary spaces of T M by replacing suitable

columns vectors of DF(z.).

In applications it is frequently important to work with coordinate spaces T that contain
a specific canonical basis vector, say. eg, of R*. Often the reason for this is that the

independent variable ¢ represented by this vector is of a special nature, as, for instance,
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when z, corresponds to the time variable in some non-autonomous DAE. Evidently, 1n
order to ensure that e € T we have to replace the ¢-th column of DF(z.) by a zero

column. This leads to the following MANPAK algorithm:

GNBAS Input: The Jacobian matrix DF(z), index ¢ € {1,... ,n};
Form Z T by zeroing column £ of DF(z.);
Use COBAS to compute the orthonormal basis U of of ker W;
OUTPUT The basis matrix U.

Of course, this algorithm requires that the constructed matrix Z' still has maximal
rank m. In order to verify this, while computing the basis of the nullspace, we may replace
the LQ-factorization of ZT in COBAS by the singular value decomposition (SVD) and
then apply scaling and standard rank-tests (see e.g. [GoVL89)). Such a version of the

algorithm was not included in MANPAK since it appears to be rarely needed.

In certain applications it is desirable to work with coordinate spaces spanned by d
suitably chosen canonical basis vectors e, ... ,¢], of R", (see e.g., [WH82), [PoRh91)). In
this case the space Z7 should be spanned by n —d canonical basis vectors of R". These
vectors can be obtained from the QR-factorization of the Jacobian DF(z.) with column
pivoting. The resulting permutation selects m column-vectors of the Jacobian such that
the m x m matrix formed by these columns is nonsingular. The indices of these selected
columns correspond to the desired m canonical basis vectors of R® spanning the space Z.

This leads to the following algorithm:

GCBAS Input: The Jacobian matrix DF(z.)
Compute the QR-factorization DF(z.)P = Q(R,S);
ki:=0, Vi=1,...,n;
Forj=1,...,m Do: Ifel® = Pe® Then ki = 1;
=1;
Fori=1,...,n Do: Ifki =0 Then n=elhl:=0+]
Output Z :=(z1,... yZm)-

10
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3. Simplicial Approximations and Moving Frames.

Continuation methods are probably the oldest methods for the computational analysis
of an implicitly defined manifold \f although this fact is often not noticed. They apply
to problems of the form (1.1} with a parameter space of dimension d = 1 in which case
the solution manifold .\ is one-dimensional. All continuation methods begin from a given
point z° € M and produce a sequence of points 7. j = 0.1.2,..., on M. In general. the
step from z7 to zJ*! corresponds to an implementation of a local parametrization of M.
More specifically, a one-dimensional coordinate subspace T = span{u} at z* is chosen, a
predicted point w is selected, and. with the corresponding local coordinate y = wu as
input, a local parametrization algorithm, such as GPHI or TPHI. is applied to generate
the next point z’*! on M. The various continuation methods differ in the choice of (i) the

coordinate direction u. (i) the construction of the predicted point w, and (iii) the form of

the iterative process used in the local parameterization algorithm.

In the case of a multidimensional. implicitly defined manifold M. it is obviously diffi-
cult to achieve a good assessment of the features of M solely from information along some
paths. This led to the development of several methods for the approximation of subsets
of such a manifold (see {Br96] for a recent survey). In particular, [RhSS] presented a first
method for computing a simplicial approximation ¥ of a neighborhood of a given point
2% € M consisting of a grid of points ¥ e M.k =0,1,... .k, and their connectivity pat-
tern. This method was globalized in [BrRh94) to allow for the computation of a simplicial
approximation covering a specified subset of M. The algorithms in [Rh88] and (BrRh94|
were restricted to the case d = 2. Recently, in [Br96}, an extension to the case of any d 2> 2

was developed and some applications and other related algorithms were discussed.

The methods in the cited articles are similar to a continuation method. At a point
7 on the current “frontier” of the already computed part of T a tangential coordinate
space of M is chosen and. by means of a tangential local parametrization of M at z,
the already computed neighboring simplices of T incident with z/ are mapped onto the
tangent space Ty, M. In addition. a reference triangulation patch of R¢ is introduced on

T,, M and matched to the open facets of the already existing part of T. This produces a

11




set of points in the unfilled gap of the triangulation at z’ which are then used to complete
the triangulation of the neighborhood of the point on T.)M. While for d = 2 thisis a
relatively simple task, for d > 2 a Delauney triangulation process was needed in [Br96].
The nodes of the completed local mesh around z/ are then mapped onto M using the local

parametrization algorithm TPHI and the resulting points and their incidence relations are

added to L.

During the process it is important to align the orientations of the computed simplices. In
the setting of the simplicial approximation algorithms this can be accomplished by setting
the orientation of any newly computed simplex equal to that of one of its neighbors. This

was the approach chosen in [Br96] where also provisions were made for the resolution of

any conflicts.

This situation is a special case of the more general problem of matching the basis
orientations of the local parametrization at any neighboring points. In differential geometry
this corresponds to the concept of a moving frame; that is, of a mapping that associates
with each point z of a d-dimensional manifold M an ordered basis, {uy,... ,uqd} of T.M
such that the mappingsu; : M = TM,:=1,... .d, form d vector fieldson M. A manifold

is parallelizable if such a moving frame exists on all of M.

In computational problems it is often important to generate a moving frame on an
open neighborhood of a given point of . Such an algorithm was developed in [Rh88] and

applied in the mentioned simplicial approximation method for two-dimensiional manifolds.

Under Assumption A, suppose that orthonormal bases of T;, M and T;, M are needed
at neighboring points z,,z2 € M. The MANPAK algorithm COBAS uses the LQ-
factorization of the Jacobians DF(z,) and DF(z2) to determine the desired m x n basis
matrices U; and Uy, respectively. But, as noted in [CS84] the QR-factorization algorithm
(and hence the LQ-factorization algorithm) need not produce matrices that depend con-
tinuously on the elements of the given matrix. In other words, the computed basis U at
2 need not converge to the basis U; at z, when z, tends to z;. This observation extends
to other algorithms for computing the nullspace of DF(z) for neighboring z. In fact, it

relates directly to the well known loss of continuity under changes of the matrix elements

12




:n the computation of eigenvectors associated with a multiple eigenvalue.

Let M, be an open subset of M and suppose that T C R? is a coordinate subspace at
each point of Mo. Assume that Up is an orthonormal basis matrix of T and that at any
£ € M, an orthonormal basis matrix U(z) of T:.M is chosen. Let V(z) = A(z)EB(z)"
be the singular value decomposition of the d x d matrix V(z) = U (z)TUp and form the
product Q(z) = A(z)B(z)T of the matrices of left and right singular vectors. Then, it was

proved in [Rh88] that the mapping
z € My — U(z)Q(z) € L(R*,R")

is of class C*~! on M, and defines an orthonormal moving frame on M.

This leads to the following MANPAK algorithm first given in (R88]:

MOVFR Input: Orthonormal tangent basis matrices Up and U.;
For V = UTU, compute the SVD V = ALBT;

Q = ABT;
U: =U, Q; ' .
Output: Rotated basis matrix U.. x(h

The use of the SVD for the d x d matrix V of MOVFR may, of course, become costly
if the dimension d of the manifold is larger. Thus other algorithms for matching the
orientation of computed bases are of interest. A simple approach is based on the use of
the well known greedy algorithm (see [PaR88]) of combinatorial computing which can be

applied to two orthonormal bases U, and U, at some neighboring points z,,z2 € M in the

following form:

ORIENT Input: Orthonormal basis matrices Uy, Uz;
Compute the matrix V = UlTUg = (vij, 1,J €J), J ={1,...,d};
(1) =0, Vie J;
Fori:=1,...,d DO:
Find the smallest k = k; € J such that |vix] = max{]vi,|, J € J}
and w(k) =0:

13
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If no such index &; exists Then re-orientation failed;

w(k,-) =1;
If v, <0 Then change the sign of all elements in the k;-th column of Us;
End If;

With the permutation P € L(RY), Pcf = cz‘, 1 € J form U, := PUs;

Output: Rotated basis matrix Ua.

It can be shown that the algorithm may fail in cases when MOVFR is successful. How-
ever, this happens very rarely. Moreover, the problem can be resolved by incorporating in
ORIENT a standard backtracking approach (loc.cit.). This modification has been imple-
mented but was not included in MANPAK.

5. Sensitivity Computation.

As noted in the Introduction, many physical systems lead to mathematical models in
the form (1.1) of parameter dependent equations. Then it is often assumed, especially in
the engineering literature. that the solutions z = (z,A) of (1.1) can be written in the form
(2()\),A). Of course, under Assumption A, this requires that at r € M the parameter
subspace A is a local coordinate space of M, which means that ker DF(z)NAT = {0} or,
equivalently, that the partial derivative DzF(z) = DF(z)z of F with respect to the state
space is nonsingular. If this holds then, traditionally, the derivative
(8.1) Dz(A) = =Dz F(z(A), )T F((2(A), 4)
is defined as the sensitivity measure of the particular solution under variation of the pa-
rameters (see e.g. [TV79)). As noted, (5.1) is applicable only at solutions z € M which
are not foldpoints of M with respect to A. In many applications this is an undesirable
restriction since exactly these foldpoints are of special interest. In fact, it is one of the
fundamental observations of bifurcation theory that these are the points where the char-
acter of the solutions of (1.1) may undergo major changes. This led to the development of

a more general sensitivity theory in [Rh93] which applies generally on M.

Let T C R” be a local coordinate space of M at a given point z° € M and denote by
(V4,5 the induced local parametrization of M at z.. Then D(0)y represents the change
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of the solution z. in the local coordinate direction y € T. Let the columns of then x m
matrix V', and of the n x d matrix 1 form orthonormal bases of T and T+, respectively.
Then V1,7 Di2(0)y is the orthogonal projection of D(0)y onto T+. It characterizes. in
essence, the change due to the nonlinear nature of M: in fact. if M were flat: that is. if

A ¢ T. then this vector would be zero. In line with this. in [Rh93], the linear mapping
(5.2) e L(RLRMY), S=VTDx0)

is defined as the sensitivity map of M at z. with respect to the local coordinate space T.

In [Rh93] it was shown that when the natural parameter space A is a local coordinate
space at z. € M, then the new definition (5.2) reduces exactly to (5.1). More generally,
consider besides the local coordinate space T at z. also the tangential coordinate space
T.. M. In analogy to Vi and Vy, let the columns of the n x m matrix Um and of the n x d
matrix Ug form orthonormal bases of T, .M and T, .M L respectively. Then the following

relations were proved in [Rh93]

(5.3) S =UTU(VIU)T,
dist(T, T.. M)
(1 - dist(T, T, A

(54) I<l, =

Here, as usual, the distance between any two equidimensional linear subspaces S} and 53

of R™ is defined by dist(S),S2) = |P\ = Pall; where Py, P, are the orthogonal projections

onto S, and S;, respectively.

In MANPAK two algorithms implement (5.3) and (5.4). respectively. In view of the
noted engineering applications, both algorithms assume that the natural parameter space
\ is used as the local coordinate space, and, more specifically, that A is spanned by the

canonical basis vectors e, ) = 1.... .d specified by a given index set J C {1,...,n}.

SENMAP Input: Index set J = {i1,... .14}, orthonormal basis matrix Uq of Tz M;
Form the d x d matrix 4 with the columns UdTe,':, LeT, ) =1,... ,d;
Compute the LU-factorization of A:

If A is numerically singular then Qutput: "Undefined sensitivity”.

15




Determine the indices k; ¢ J, 1 < k; Sn.j=1,..., m=n—-d
. . =17 n.

For j =1,... ,m Do: Solve Aw; = Uy eg ;

Output: £ :=(wy,... ,Wm) -

SENNRM Input: Index set J = {i1,... ,iq}, orthonormal basis matrix Uq of Ty, M
Form the d x d matrix A with the rows (¢} )"Us,j =1,...,d;; N
Compute the smallest singular value o4 of A;
Ifoy =0 Then ( =0 Else (= ;}3—1;
Output: ||Z||, := (.

The corresponding algorithms for the more general case of an arbitrary local coordinate

space T were not included in MANPAK due to their infrequent applicability.

6. Derivatives of Local Parametrizations.

Let M be a d-dimensional C* submanifold of R™ with k > 2 and (Vd,¢) a local C*
parametrization of M near z. € M. Then, as noted in Section 2, for any v, € R such
that (zc,vc) € TM, the pair (V¢ x RY, (p,Dp)) is a C*=1 local parametrization of the

tangent bundel near (z,v.). This means that for the evaluation of the corresponding

local parametrization of TM at the that point we need an algorithm for computing the

derivative Dy of .

Under Assumption A, let T be a coordinate subspace of M at z.. As before, suppose

that on R™ and RY the canonical bases are chosen and that the columns of the n x m matrix

U form an orthonormal basis of the given coordinate subspace T at z.. Then by Theorem
3.1 the mapping (3.2) is a local diffeomorphism near z.. € M and the local parametrization

(V4,) induced by T satisfies (3.3). Thus, by differentiation of (3.3), it follows that
(6.1) DH(s(y))De(y)w = Jv, Yy € V4, veR:

Since the Jacobian (3.5) of H is nonsingular at z., this shows that at any z = o(y), ¥ € Ve,

the derivative Dy(y) can be computed as follows:
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DGPHI Input: Local coordinate basis U at z., Jacobian DF(z) at a neighboring point

r=@(y)

DF(I)).

Compute the LU-factorization of 4 := ( ot

Forj=1....,d Do: Solve Az; = el

Output: Do(y) :=(21,.-. ,2d)-

In line with our general format, the algorithm assumes that the Jacobian DF(z) has

already been evaluated by the calling program.

In the case of a tangential coordinate space we obtained the modified algorithm TPHI
based on the LQ-factorization of DF(z.). This reduced the cost of the GPHI algorithm.
For the evaluation of the Jacobian of » the use of the LQ-factorization is not as advan-
tageous. Suppose again that we want to compute Do(y) at z = ¢(y). Moreover, let U;
and U;, be n x d matrices with orthogonal columns that form bases of T:M and T; M,
respectively. With the matrix representation of DH(z) used in DGPHI, the j-th column
z; of D(y) satisfies DF(z)z; = 0 and U, z; = ef. Hence we have z; = Uy, for some
y; € R¢ and U] U.y; = ¢] which implies that
(6.2) Doly) = Us(U/ Ue] ™"
In analogy to DGPHI this gives the following algorithm:

DTPHI Input: Tangent basis U,, at 7., 2 neighboring point z € M;
Use COBAS to evaluate U, at i
A= U,T; Us;
Forj=1,...,d Do: Solve Az, = e?; 2= Urzys

Output: Dg(y) 1= (21, - 3d)-
Since the computation of the basis matrix U, requires the application of COBAS, the
use of DTPHI is, in general, more costly than that of DGPHI.

Suppose now that k > 2 in Assumption A. Then ¢ is at least twice differentiable at any

y € V¢ and by differentiation of (6.1) we obtain
6.3)  DH(w(y))D*o(y)(v1,v2) = =D H(p(y))(De(y)vr, Do(y)vr), Yor, 01 € R

17




which, because of the nonsingularity of DH(¢(y)), defines D%¢(y)(v1,v2) uniquely. In
line with our reverse communication paradigm, the following MANPAK algorithm of D%y

assumes that the vector w = D?*F(z)(u;,u2) has already been computed for given z = ©(y)

and u; = Dy(y)vi, t = 1,2

D2GPHI Input: Tangent basis U, at z., Jacobian DF(z) at a neighboring point z € .M.

the vector w = D3F(z)(u1, uz) with u; = Dp(y)vi, 1 = 1,2;
DF(z)

Compute the LU-factorization of A := yr )

—-w
Solve Az = ( 0 ) for z;

Output: D?p(y)(vy,v2) 1= 2.

7. Curvature and the Second Fundamental Tensor.

A principal application of the algorithms for the computation of the derivatives of a
local parametrization arises in connection with the solution of differential algebraic equa-
tions. This is discussed in the mentioned companion paper [Rh96c] and will not be further

addressed here.

Another interesting use of the algorithm DGPHI occurs in certain constrained minimiza-
tion methods. We indicate here only briefly the approach suggested in [Rh96a]. Under
Assumption A with k > 2, suppose that ¢ : E € R" — R! is a C" functional, r > 2,
on some open set E and that E N M is not empty. Consider the problem of computing
a local minimizer z* € M of g on M, and let z € M be a point on M that represents
our current approximation of z*. We introduce a local parametrization (Ve,p) of M at
z. Then the local representation h = go ¢ of g near z is at least of class C? and, locally,

| the minimization of ¢ on M is equivalent with the unconstrained minimization of A. This
i suggests the application of a trust region step to A in order to obtain a new approximation

of z*. For this we approximate h by the quadratic functional

(11) ho(y) = h(0) + Dh(O)y + 3 D*h(O)u.¥). v R,
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Here we have
Dh(0)y = Dg(z)Dy(0)y, D*h(0)(y,y) = Dg(z)D*4(0)(y,y) + D*9(2)(De(0)y, Dp(0)y),

which can be evaluated by means of the MANPAK routines DGPHI and D2GPHL For
details about the trust region step we refer, for example, to [MS81]. Clearly, in practice.

the computation of the local Hessian Dh(0) can be replaced by some update scheme.

The second derivative D%y of a local parametrization has an important connection with
the second fundamental tensor of the manifold M. This tensor is a concept of Riemannian
geometry; that is, it requires a metric on the manifold M. We use here the metric induced

by the canonical (Euclidean) inner product of R®. For a definition of this symmetnc.

vector valued tensor

(7 ‘)) Vg H TgM X TgM Land T:MJ-, z € :\4,

in a setting similar to that used here, we refer to [RaRh90). In lieu of & definition we cite

only the following characterization of V; proved in [RaRh95]:

Theorem 7.1. Under Assumption A, let z € M, Z any complement of T.M, and Q
the orthogonal projection onto (T:M)*. Then the component of the second fundamental

tensor V. of M at z in the tangential directions u,ul e T: M is

(7.2) V,(ul,uz)= —Q[DF(::)'z]-‘sz(x)(ul,uz).

Let T be a local coordinate space at £ € M and (V4, ) the induced local parametrization
of M. Moreover, set Z = T+, and, as before, let the columns of the n x d matrix U form
an orthonormal basis of T. Note that at z = ¢(0) the equation (6.3) defining D?(0)
requires that DF(z)D*¢(0)(v1,v2) = -D*F(z)(u',u?) and UTD25(0)(v1,v2) = 0 with
u; = D(0)v;, ¢ = 1,2. Evidently, this is equivalent with

(DF(2),2)D*(0)(v1, v2) = =D*F(z)(s'.u"),
whence, it follows from (7.2) that

(7.3) Vo(u',u?) = QD*p(0)(v1,v2), ui = Dp(Q)vi, ¢ = 1,2.
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Note that D2o(0)(vy,v2) € T+, and thus Ve(ul,u?) = D¥*(0)(v1,v2) for the tangeﬁfial
coordinate space T = T,.)M. Hence this tensor component can be obtained by application of
the MANPAK algorithm D2GPHI with a tangential coordinate space. However, if COBAS

was used with ZT = DF(z.) to compute the tangent basis, we may proceed as in DTPHI

and simplify the process as follows:

TSFT Input: The LQ-factorization DF(z) = PT(L0O)QT,
the vector w = D2F(z)(u1, uz) with u; = De(y)vi, i = 1,2;
Solve Lz = PTw for z € R™;
z2:=Qhz;

Output: Vi, (v1,v2) = 2.

The second fundamental tensor characterizes curvature properties of the manifold and
is closely connected with the Riemann curvature tensor R of M. Accordingly, it is not
surprising that it has numerous applications. For example, in [RaRh90] the tensor has
been applied for computating bifurcation directions at certain foldpoints on an implicitly
defined manifold. Then, in [RaRh95] it was used in an algorithm for solving the Euler-
Lagrange equations arising in the modeling of constrained dynamical systems. In both

cases, early forms of the MANPAK algorithms D2GPHI and TSFT were applied.
Note that it suffices to have a method for computing the diagonal components V;(u,u)
since, by the bilinearity and symmetry of the tensor, we have
Ve(ut,u?) = 2Ve(u,u) - %(V,(ul,ul) + Vi (u? u?))
for any u!,u? € Ty, M and u = (1/2)(u’ +v?). In [RR902] a geometrically based algorithm
was given for approximating the diagonal component Vy(u,u) for any u € T. M.

Let 7 be any path on M and z¢,z,z- € M three consecutive points along 7 that form

a nondegenerate triangle. Then the curvature of the circumscribing circle of the triangle

is given by Heron’s formula

(1.4) = oo aG e, = arote

20




where a = |[z¢ = ellyy b = ll2r = Teilyy ¢ = lze = zell,-
tend to the middle point z, then the circumscribing circle tends to th
the path =
that the value (7.4) of x approximates |[Vz,(

= at .. Moreover, the unit vector in the dir

principal normal vector of the path = at z..

For the computation it is useful to rewrite (7.4) as

1

1.1 1 -
k=—-|—+—] V1=-48 sina, §=a.—b., a=arcosy, 7= .
c ‘a. b ae + be

This leads to the following MANPAK algorithm:

|
|
CURVT Input: Consecutive points I¢,Ze,Zr along a path 7 on M,
|

When 1 —~ falls below the machine precision e then,

be zero and, accordingly, we set x = 0. The approximation p of the principal

tangent vector v € T, M of 7 at zc, machine precision ¢
Evaluate a := |[z¢ — Zcllg, b 1= ll2r = Tcllp, ¢ 1= lze = zellps
wi=o/[lvlly:
= (1/a)( = z.) + (1/b)(zr = 22);

pi=p—(p uh
a.:=ajc; b, :=b/c;
§:=ae=be; 7= 1/(0 +be);
If1 —v < ¢ Then

k=0
Else

@ 1= arc cos ¥:

x:=(1/c)(1/ac+ 1/bc) V1 =02 sina;
End If;
Output: p, ~; Vz (u,u) := ~p.

the path at z. is generated by a simple Gram-Schmidt orthonormalization step.

For some numerical examples involving CURVT we refer to [RR90a].
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When the outside points z¢, Tr
e osculating circle of
at z. and the limit of ~ is the curvature of 7 at z.. It was shown in [RR90a]
u,u)||, for the tangent vector u € T. M of

ection of V_(u.u) is approximated by the

in floating point arithmetic, a will
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